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COUPLED ELASTIC AND ELECTROMAGNETIC FIELDS
IN A DIATOMIC, DIELECTRIC CONTINUUM

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York

Abstract—Huang’s equations for coupled mechanical and electromagnetic fields in diatomic, ionic crystals are
extended to accommodate shorter wave lengths and to include the acoustic branches of the dispersion relations for
plane waves.

1. INTRODUCTION

EQUATIONS governing coupled mechanical and electromagnetic fields in diatomic, ionic,
optically isotropic crystals were given by Huang [1, 2] in terms of a polarization variable,
the relative displacement of the ions and the usual variables of the electromagnetic field.
In the present paper, the equations ai : extended to take into account the separate electronic
polarizations and the separate displacements of the two ions, the ionic polarization, the two
electronic polarization gradients and the two displacement gradients. Aside from a more
detailed representation of the atomic and electronic interactions, there are two main effects
of the additional considerations : first, the equations are applicable to shorter wave lengths,
owing to the inclusion of the displacement and polarization gradients; second, the acoustic
branches are included in the dispersion relations for plane waves, in addition to the optical
branches and the electromagnetic branch.

In Section 2, the differential equations of motion are given for a diatomic, ionic crystal
with NaCl structure. This is done simply by adding the equations involving the magnetic
field to a previous set of equations [3] which was restricted to a quasi-static electric field.

Dispersion relations for longitudinal and transverse waves in the [100] direction are
derived in Section 3 and an examination of the long wave limits reveals the presence of the
acoustical branches as well as the optical branches and electromagnetic branch included in
Huang’s results. As previously found by Huang, the longitudinal and transverse optical
branches have the same long wave limit when the electromagnetic field is taken into account.
It is also found that the long wave limits of the optical and electromagnetic branches are
not influenced by the polarization and displacement gradients and the long wave limits of
the acoustic branches are independent of electrical and magnetic properties.

In the last section, the identity of the static dielectric constant and the low frequency
index of refraction of the electromagnetic wave is verified.

2. EQUATIONS OF MOTION

As in a previous paper restricted to the quasi-static electric field, each of the two inter-
penetrating continua representing the diatomic ionic crystal has its own displacement
u®, x = 1,2 and electronic polarization (per unit area) P{®. The superscripts 1 and 2
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identify the continuum representations of the lattices of positive and negative ions, respec-
tively.

The stored energy density of deformation and polarization, W, is assumed to be a
function of the individual small strains

SH = JuR+ul), k=12 (1)

the individual polarizations, P{*), the individual polarization gradients, P{), the relative
displacement

uf = uP —u @
and the relative rotation
1
of = 3uf;—u¥). (3)
Thus,
L L 1 2 1 2 1 2
W = W (SSJ )s S&j)’ Pf ), P$ )5 Pﬁ',i)’ Pg‘,i)’ u?" (U:'; . (4)

The total polarization per unit area, P;, is the sum of the electronic polarizations and the
ionic polarization
P, = PV+ PP +q,uf, )
where ¢, is the ionic charge per unit volume.
Of the variables in (4), only P; and u¥ are accounted for in Huang’s [1, 2] equations of

motion.
When the Maxwell electric self-field, E¥S, is quasi-static, it satisfies

euEd? =0, (6)
where ¢, is the unit alternating tensor. In that case, the total potential energy density, W, is
the sum of W’ and the energy density associated with EMS:

W = W+ 3eoEMSEMS, (7
where ¢, is the permittivity of a vacuum. The accompanying kinetic energy density is

T _ Z%p(x)afk}df’(), K = 1’ 2, (8)

where p(! and p® are the mass densities of the individual continua and the 4 are the
velocities.

Again for the case of the quasi-static electric field, it was shown previously [3], by means
of an extension of Toupin’s [4] variational principle for elastic dielectrics, that the field
equations, in addition to (6), are

T, +(— D)(Th— TH+qEVS)+ f©+(— 1)q,E) = p™il", )
ES+EP+E +E] =0, (10)
e BN+ P+ P +quut; = 0, (11)
where
L L L L L
T® = ai E®© = _6_W_ E® — Q_W_ * 61 T* — ow (12)
YT oSk’ ! oP®’ g apky P dur’ YT dwk

and f® and E? are the body forces and external electric field, respectively.
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The magnetic field is incorporated into these equations simply by changing (6) to

I $5+B,=0 (13)

and adding the equations
Ho 'euBy; = oEMS + PV + PP + g, u, (14)
B;; =0, (15)

where B, is the magnetic flux density and pg is the magnetic permeability of a vacuum (the
magnetic susceptibility being neglected). The potential energy density becomes

W = WL+%£0E1WSE?{S+%H0_ lBiBi, (16)
while the energy density of deformation and polarization (7), the kinetic energy density (8),
the field equations (9)(11) and the constitutive equations (12) remain unchanged.

It was shown previously [3] that, for the NaCl-type structure, the energy density of
deformation and polarization is

1 2 A i 1 i
=3 Z (a" P(")P( )+b”k,P(")P( )+ C,JHS(")S( )+2dUMPEJ ‘)S;(,)
+ Y (@* uf P + d*ofP{,; + a**u} uf + c**ofol

+ z (bOPR) +c*°SY), (17)

where P{}, and P{¥, denote the symmetric and antisymmetric parts of P{, respectively.
Also,

ait = air = afiéy;,
b = bl = b0+ b130,;0u + D500 i+ 640 u) + b4 (846 1 — 540 1), 18)
= e = c“fsijkt + c,i)iéijékl +c54(0ud+ 010 i),
dii ikl = dxléijkl +d4é; POu+di5(0,0 i1+ 0ud i),
where 6;; (or §;;,) is unity when its indices are alike and zero otherwise and
b** = bA —bA —2b%L, =t -ch -2k, At =d% =245t (19)

It may be observed that material constants with superscripts k4 = 11 or 22 denote inter-
actions within one of the two component continua whereas constants with superscripts
kA = 12 or 21 denote interactions between the two continua. Also, the asterisks identify
material constants associated with the relative displacement u}.

Upon substituting (17) in (12) and the resulting expressions in the field equations, we find

Z (€48 juauf s + 1 5ull)y + cBh g + ulf)]
+ Z [dlkéijklpg,lk)i + d Pfll)J + d lel)l + P(ll)l)]
A
gt g 1)

+ (= 1F L [P = P = (= el —uil)]

—(=1)f[a*' PV +a*2 PP +a** (P — V) — q E}S — q EJ1+ [ = p™i, (20)
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A A A A ).
Z [dK 51]““5 k)l 12“5 1)) + d (ugll)l + u(l l?]) + ( ) d*K(u.(]Al)l 5)1)1)]

+ Zl: (646 P + b5 PO + bEG(PY) + PR + b54(P, i — Py1))
—a{{PV —afi PP — a**(ulP —uV)+ EMS+ E9 = 0, (21)
eoEMS + PV + PR +q,(u® —u}) = 0, (22)
U,‘E S+B,=0, (23)
Ko ‘eipBij— o EMS — PV — PPV —q ¥ = 0, 24)
B, =0. (25)

These are the equations of motion for the coupled elastic and electromagnetic fields in
the continuum representation of a diatomic ionic crystal with NaCl structure.

3. WAVES IN THE [100] DIRECTION
We consider plane waves in the [100], or x, , direction:
U = K™ eiv, P¥) = [ e EMS = M, eV, B; = N; eV, (26)

where y = &x; —ot and K™, L™, M; and N, are constants.

(a) Longitudinal waves
In the case of longitudinal waves,

uP =uf =0, PY) = P =0, EYS = E¥S = (, (27)
U = K e, PP = LY eV, EMS = M, eV, (28)
Then, from (24), B; = 0; i.e. there is no coupling with the magnetic field, but the Maxwell
electric self-field is coupled with the displacement and polarization fields. The solution

is, therefore, the same as that found previously [3] for the case of the quasi-static electric
field, with dispersion relation

A, =0, (29)
where A, is the determinant with elements
Ay = pVo’—a**—q, g0 ' —c11&%, Ay = Ay,
A, = a**'*"Iiﬁo —c13é?, As, = Ay,
Az = a*' +q,60 ' —dii&?, Ays = —ajj—e ' —h1i&,
A14=a*2+q*851——df} 4 Azy = —aji—g ' —biie?,
Aoy = A, Aur = A, ©0)
Ajz = pP0? —a** —gie; ' ~ 11, Ayy = Azg,
Ay = —a*' —q,e0 ' —di?E3, Ayz = Ay,

_ %2 22 22 — 22 222
Ayy = —a**—q.e0 ' —d31E%, Ay = —aji—ep ' —bi3ER
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The long wave limit of the longitudinal optical branch is obtained from
lim A, = (o P (al +65 )@} +e5 )~ (@it +e5 1= (00 +p)Ds}  (31)
where
aii+eo’  aifte' a*'+q.e’
D, =| all+eq! ali+es! a**+q.8'. (32)
a*' +q,e0" a**+qe0' a**+qleg!
Hence, the limiting frequency of the longitudinal optical branch is

wo = {D/pllai} +& Naii +&0 ) —(aif +e5 )1}, (33)

where p = pVp?/(pV) + p?), ie. p is the reduced mass density.

The long wave behavior of the longitudinal acoustic branch of the dispersion relation
is obtained from

lim A, = lim [(c}]+c33+2c1H)E2 —(pV + pP)?]D,,. (34)
©,&—~0 0,£=0

Hence, at long wave lengths, the frequency of the longitudinal acoustic branch is given by
w4 = Elleii+eii+2e1 D/ +p)1E. (35)

(b) Transverse waves

Of the two similar transverse waves, with displacements in the directions of x, and x5,
respectively,; we choose the former for examination:

P =uP =0, PP=PY=0 E=Ef-0 B, =B,=0 (%
W= KPe,  PO=LO,  EYS =M%, By= Ny (3

In the case of the quasi-static electric field the absence of (24) permitted EX®, as well as B,
to be zero ; but both must be non-zero when the full electromagnetic equations are imposed.
To find a form of the dispersion determinant similar to (30), it is useful first to express

M, and N, in terms of K§? and LY through the use of (23} and (24):
M, = —ioNs/E = =& (LY +LP+4,(KP - K, (38)

where

&= & — & /uow?. (39)

When the results (38), along with (36) and (37), are inserted in the remaining equations of
motion, the latter are satisfied if

AR =0, (40)
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where AEM is the determinant with elements
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1= p Vo’ —a** —qer ' —(cii— M,

a**+gle; ' = (Gh+ M,
a*! +queg ' —(das—d*)e?,
a*? +qye5 ! — (@3- d*)E,

’
12>

p(z)wz —a** — dubi 1 —(cﬁ ——C**)CZ,

—a* —queg ' —(dii+d*)E,

¥ gy @S,

Ay, = Als,
Ay, = A,
33 = —aji—eg ' —(bii+b33)¢
e = —all e ' —(bih+ b3
A:u = A’14,
Nz = A,
Ass = Ay,

Ay = —qii—gg ' — (b33 +b37)%

The long wave limit of the transverse optical branch is obtained from

lim AR = w*{pVp P @(al} +e5 )@ + 65 )= (@}l +65 )2~ (6" +pPD, ),

-0

so that the limiting frequency is

iy = (D /pl(ail +e5 ") aii +e5 ') — (@l +e0 M)A},

(41)

42)

(43)

i.e. as found by Huang [1, 2], the same as the limiting frequency of the longitudinal optical

branch.

The long wave, low frequency behavior is given by

where

and

0,50

lim AFY = lim [(c3i+eid+2ei98 ~ (0 +p )0’ 1Dy,

D, = (Eo#oDsz — & D)/(eopow® — fz)

12
ai
22
ay

a*?

a*!
a*?\.

a**

Thus, there are two branches, with limiting behaviors

Wem = é(D/’SO”ODL)%,
Bl = lchh+ AT+ 23+ PP

The first of these is the long wave end of the electromagnetic branch, as found by Huang
(1, 2]; the second is the long wave end of the transverse acoustic branch : identical with that
obtained for the case of the quasi-static electric field [3].

It will be observed that the long wave limits of the longitudinal and transverse optical
branches, (33) and (43), and the electromagnetic branch (47) are independent of the material
constants b, ¢ and d, i.e. independent of the polarization and displacement gradients.
Also the long wave limits of the acoustic branches, (35) and (48), depend only on the mass

(44)

(45)

(46)

(47)
(48)
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density and the elastic stiffness c¥{ and c%4. Hence, as far as the limiting behavior at the
long wave end is concerned, the results, here, conform with Huang’s, with the addition of
the acoustic branches. However, as may be seen from the determinants (30) and (41), when
the wave length diminishes from infinity, the elastic part couples with the remainder and
the results diverge from Huang’s.

4. INDEX OF REFRACTION AND DIELECTRIC CONSTANT
Recalling that the velocity of electromagnetic waves in a vacuum is
c= (Soﬂo)_%’ (49)

we see, from (47), that the low frequency index of refraction of electromagnetic waves in
the dielectric is

n = cf/w = (D, /D). (50)

That the square of the low frequency index of refraction, D,/D, is equal to the static
dielectric constant, defined as

Ko = 1+(P/egE™®), =0, (51

may be shown, conveniently, by deducing Huang’s formula for the dielectric constant from
(20)and (21). As shown in [3], Huang’s equations of motion may be found from (20) and (21)
by discarding all spatial derivative terms (thereby restricting the applicability of the equa-
tions to infinite or, at least, very long wave lengths) and expressing the residue in terms of
w{= ptu¥), P,and EMS, with the result (omitting f* and E?):

W; = by,w;+b,EY®, (52)
P, = by,w;+ by, EM, (53)

where Huang’s constants b, b,,, b,,, b, are expressed in terms of constants appearing
in the present paper by

by, = —Djplaiiati—ailall), by, = (ali+ail—2ai})/(@iiati ~aiial]), (59)
biy = by, = laii —aiDa** +(aii —ai}a*'! —q,(aliaii —aliai)/(aiial] —aitai})p?. (55)
Introducing a factor €'** and eliminating w; between (52) and (53), we have
P/EYS = [by,(by, +0*) = b1,)/by, + 7). (56)
Inserting this in (51), we find Huang’s formula for the static dielectric constant
Ko=1+(by,b,,—b?},)/e0by, - (57)

Upon substituting the formulas for b,,, b,, and b,, given in (54) and (55), into (57), we
find, after some algebraic manipulations,

Ko = DD = n?, (58)

as required.
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AbGeTpakr—O06061maroTcs ypaBHeHMss XyaHra, KacaloIUMeecs CONPSKEHHbIX MEXaHHWYECKHX H 3/1eKTpo-
MATHUTHBIX [OJiel, B IByXaTOMHBIX, HOHHBIX KPHCTAa/UIax, i NpPHCNocobaeHus 6osiee KOPOTKHX BOJH
H y4éTa aKyCTHYECKUX BETBEH IUIst 3aBUCHMOCTEN QHCIIEPCHH TIOCKHX BOJIH.



